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Abstract. It is often said that the Aharonov-Bohm ( A B )  effect is an effect that is due to 
the vector potential. This is considered remarkable since a quantity that is not uniquely 
determined has a measurable effect. We show that, in the symmetric Coulomb gauge, 
( e / c )A(r )  is simply the momentum of the electromagnetic field. The effect may equally 
well be considered an effect of the electromagnetic momentum. Thus, it is possible to 
discuss the AB effect strictly in terms of observables. The idea that the effect is due to the 
vector potential is correct, but sheds little light on the physics of the effect. 

1. Introduction 

In a well known work published in the early days of quantum mechanics, Dirac [ l ]  
demonstrated that in a region free of magnetic fields, the solution of the Schrodinger 
equation may be written 

q ( r ,  t )  = q o ( r ,  t )  exp - A ( r ‘ )  dr’  (3 ) 
where W o ( r ,  t )  satisfies the Schrodinger equation with the same scalar potential, but 
in which the vector potential has been set equal to zero. The phase factor of equation 
(1) is the basis of all derivations of the Aharonov-Bohm (AB) effect [2], that are not 
explicit scattering calculations. The importance of this phase factor has been 
emphasised by Wu and Yang [3,4] and later by one of the present authors [5-71. It 
is generally agreed that this phase factor plays an essential role in all AB-type problems. 

2. Classical forces 

In order to understand fully the forces involved in the AB effect, it is essential (reader, 
please bear with us!) to consider the effect of the electron’s own electric and magnetic 
fields. The viewpoint that the interaction energy of the flux column with the electron 
is purely magnetic leads to an interaction energy 

A E  =- Be,(r ’ -r )  Bext(r’)  d3r’ 
4rr ‘ I  

with 
1 B,, =- u x E (  r ’ -  r )  
C 
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for an electron at point r moving with velocity U. It is useful to consider the quantity 

1 - V 
477 

Be,( r’ - r )  * Be,,( r’)  d3r’ 

U x E (  r’ - r )  * Be,,( r’)  d3r’ 
4 7Tc 

- V u ~ E ( r r - r ) x B e , , ( r ’ ) d 3 r ’  
-- 4 7K I 

Here we have made use of the expression for the electromagnetic momentum, which 
depends upon the electric field of the electron and the magnetic field of the solenoid. 

The reader may have guessed that the second term on the right-hand side of equation 
(4) is just ( e / c ) u  x Be,,, the Lorentz force. This can be seen as follows: 

-V x E ( r ’ -  r )  x Bext(r’)  d3r’ 
4 T C  ‘ 5  

J ) 1 
4 7Tc 

=-( - J B e , , ( r f ) [ V . E ( r ’ - r ) ] d 3 r ’ +  [ B e , , ( r ’ ) . ~ ] @ ( r ’ - - r ) d 3 r ’  . ( 5 )  

Making use of the fact that V * E ( r ‘ -  r )  = -V’ E ( r ’ -  r )  yields 

(1 B ( r f ) 4 m 8 ( r ’ - r )  d3r‘+ [ B ( r ’ )  * V ] E ( r ’ - r )  d3r’ . I ) ( 6 )  v x Pfie ,d  = - 
4 T C  

The first term of equation (6) is ( e / c )  B ( r ) .  The second term can be shown to vanish. 
Let E be an arbitrary constant vector: 

E * I [ B ( r ’ )  V ’ ) E ( r ‘ -  r )  d3r’ 

=I [ B ( r ’ ) . V ’ ] [ E . E ( r ‘ - r ) ] d 3 r ’  

= I V’  [ E  E ( r ‘ -  r ) ] B ( r ’ )  d3r’- E * E(r’--  r)V’ * B ( r ’ )  d3r’. I (7) 

The first integral can be converted into a surface integral that vanishes at infinity. The 
second integral vanishes since V * B = 0. Thus, we have the result 

d t  (3 1 
4T 
-V J B e l ( r f - r )  .Be,,(r’)d3r’=-Pfield+ - u x ~ .  

Equation (8) gives a new insight into the dynamics of the AB problem. The Lorentz 
force is simply the time rate of change of the kinetic momentum, m. The left-hand side 
of equation (8) reads F = V ( A E ) ,  and not F = - V ( A E ) ,  where AE is given by equation 
(2).  We assume that the currents in the solenoid windings as well as the probability 
current density of the electron are kept constant. (The physical consequences of this 
assumption are discussed fully in section 5 . )  It is well known [ 8 ]  that the magnetic 
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force between current carrying conductors is given by F = V ( A E )  when the currents 
are kept constant. Our force law now reads 

dPtota, Be,( r’ - r )  Be,,( r ’ )  d3r’ = - 
471 dt  ( 9 )  

with Ptotal = n + Pfield. It is now clear that the usual statement that there is no force in 
the AB problem requires clarification. There is no mechanical force (i.e. no force on 
the inertial mass of the electron). However, the rate of change of the total momentum 
is not zero, since the electric and magnetic fields of the particle penetrate the solenoid. 
(In cases in which the interior of the solenoid is shielded, the electric and magnetic 
fields of the electron interact with currents in the shielding material.) 

Since V x Pfield = (e /  c)V x A, it is clear that there exists a gauge in which (e/c)A = 
Pfield. This is the ‘natural’ gauge in which to solve problems. We see that, because of 
this relation, the AB effect can be traced to the physical quantity that can be considered 
responsible for the effect. The gauge invariance of the theory then gives the appearance 
that a non-physical quantity (the vector potential) is responsible for the effect. 

The result that the ‘natural’ gauge, in which (e/c)A(r)  is equal to Pfield is the 
symmetric Coulomb gauge will probably not surprise the reader, 

Pfield(r)=-- E ( r ’ - r )  x[V’xA(r’)]  d3r’ 
4 T C  ‘ J  

4 71c 
1 

4 7Tc 
=- J V‘[E(r‘-r) .A(r‘)] [A(r’) *V’]E(r‘-r)  d3r’ 

--!- I [E(r ’ -  r )  * V‘]A(r’) d3r’-- A(r’) x [V x E(r’ -  r ) ]  d3r’, 
4 T C  

(10) 
4 T C  ‘ I  

The fourth term of equation (10) vanishes, since V x E = 0 for the Coulomb field of 
the electron. The first integral vanishes by a corollary of Gauss’s theorem. The second 
integral can be shown to vanish in the Coulomb gauge. (The present derivation assumes 
that the external magnetic field has a finite source, so that the fields vanish at infinity.) 
Again, taking E to be an arbitrary constant vector, one finds 

E - [  [A(r’) .V’]E(r’-r)d3r’ 

= J V ’ - [ A ( r ’ ) ~ . E ( r ’ - r ) ] d ~ r ’ -  [ ~ . E ( r ’ - r ) ] V ’ . A ( r ’ ) d ~ r ’ .  (11) I 
Again, the first term of equation (11) can be converted into a vanishing surface integral. 
The second term vanishes if one takes V’ * A = 0, the Coulomb gauge. The third integral 
of equation (10) can be shown to be 

e 
4TC C C 

A(r‘ )V‘ .E(r ’ - r )d3r ’=-  A( r’) e6 ( r’ - r )  d3r’ = - A( r). 

This shows that, in a realistic problem involving sources of finite extent in space, the 
electromagnetic momentum is given by (e/c)A(r) ,  where A(r) is the (uniquely defined) 
vector potential in the Coulomb gauge. 
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3. The infinite solenoid 

When sources of the external flux are not confined to a finite region, the Coulomb 
gauge condition may not be unique. The vector potential satisfying Pfield( r )  = (e/  c)A( r )  
for the ideal infinite solenoid is the symmetric Coulomb gauge. The proof follows. 

In cylindrical polar coordinates, the symmetric Coulomb gauge is 

fBP p S R  
{ @ / 2 n p  p s R  

A ( r )  = A ( p ) i  with A(p) = 

cp = B ~ R ~ .  

Without loss of generality, we may consider the electron to be located a distance 
p from the origin along the x-axis. The cases p 6 R and p 2 R may be considered as 
special cases of the same computation: 

Pfield(  r )  = - E (  r’ - r )  x B( r ’ )  d3r’ 
4 T C  ‘ I ‘  

B - - ---x E ( r ‘ - r )  d3r’. 
4nc  v 

In the last integral, V is the volume of the interior of the solenoid. By symmetry, 
J’ Ey d3r’ and Ez d3r’ vanish. Therefore, 

= j  - V ( r f - r ) n k  da’  

In equation (15), is the unit vector in the y-direction and n, = cos 8’. The Coulomb 
potential of the electron is given by 

- lox dk e-”””J,,,(kp)J,(kR) e -k lz ’ l  V ( r ’ -  r )  = - - e 

lr’-rl 

Be 
Pfie ld(r )  = j ~ f joW dk 

Writing cos 6’ = ;(eie’+ e-’e’), one obtains 

jz= cos 6‘e-”’ J,(kp)J,(kR) e-k’z’lR d6‘dz’ (17)  
4nc  m=--cc . - x  0 

Pfield(r’) = j A - BeR loK dk J,(kp)J,(kR) dz‘ 
2 c  -X 

where J - , ( x )  = -J,(x) has been used. The z’ integration yeilds 

The integral of equation (19) yields the final result 

for p S R  
for p a  R. Pfie,Li( r )  = J - (20) c e risp @/21rp 

Thus, for the ideal infinite solenoid, Pfield( r )  = (e /  c)A(  r )  when the vector potential is 
in the symmetric Coulomb gauge. 
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After this work was completed and submitted for publication, it was brought to 
our attention that a proof that P f i e l d ( r )  = ( e / c ) A ( r )  for the infinite solenoid in the 
Coulomb gauge was given by Boyer [9] almost twenty years ago. It is truly unfortunate 
that the significance of Boyer’s result was never fully appreciated. 

4. The Dirac phase factor 

We are now in a position to examine the relation of the interaction energy of equation 
( 2 )  and the forces of equation (8) to the Dirac phase factor of equation (1). It is 
essential to remember that in quantum theory the wave properties of the electron are 
determined by the canonical momentum. In the symmetric Coulomb gauge, this is just 
the total momentum (kinetic momentum plus field momentum). Here we have con- 
sistently neglected terms involving Eel x HeI. This momentum is related to an elec- 
tromagnetic self-energy. 

We begin by noting that the expectation value of the interaction energy in the 
quantum wave equations is 

A i =  -- j . A e , , ( r ) d 3 r .  (21) 
C ‘I 

Equation (21) is exact in Dirac theory and correct to first order in e in non-relativistic 
Schrodinger theory. 

The current density is related to the proper field of the particle by 

4 r e  1 dEel V x B , , = - j + - - .  
c c a t  

The energy shift of equation (21) now becomes 

The second integral of equation (23) may be written 

-!- 5 ICeI( r )  * A,,,( r )  d3  r. 
4 m  d t  

Next, we approximate the electric field of the particle by the instantaneous Coulomb 
field, that is retardation effects are neglected. This approximation has also been used 
by Peshkin [lo]. In this approximation, we have a scalar product of a longitudinal 
electric field with a transverse (in the Coulomb gauge) vector potential integrated over 
all space. Such an integral vanishes. 

The first term of equation (23) may be integrated by parts to yield 

47T ’ I  A E  = -- Be, Be,, d3r 

which is the negative of equation ( 2 ) .  The force is then given by F = - V ( A i ) ,  where 
F is the force of equation (9). Standard theory yields the mechanical force 

1 e 
h 2c 

F =- [ H ,  U ]  =- ( U  x Be,, -Be,,  x V )  

with m - U = n = (h / i )V - ( e / c ) A (  r) ,  
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The force of equation (26) vanishes identically on the space of Dirac wavefunctions 
[ 5 ] .  A proper choice of wavefunctions is necessary to insure that the gradient of the 
magnetic field energy is equal to the time rate of change of electromagnetic momentum 
in the AB problem. The quantum version of equation (8) is not an operator identity. 
Its validity depends upon the electron probability current being related to the proper 
fields of the electron through Maxwell’s equations. 

The importance of the energy shift of equation (25) was first emphasised by Freeman 
[ l l ]  and by Coulson and Freeman [12]. These authors pointed out that, in a semi- 
classical argument, one can equally well treat the Aharonov-Bohm effect by replacing 
the Dirac phase factor by the phase factor 

r t  

with A E  given by equation (25). The Freeman-Coulson (FC) phase, because of the 
equivalence of equations (21) and (25), is given by 

c#+~ = J j (  r’, t )  A,,,( r ’ )  d3r’ dt. 
R C  

In  a semiclassical approximation in which A,,,( r )  changes little in the region in which 
$( r, t )  has support, one may take A,,,( r )  outside the integral, evaluating it at the centre 
of gravity of the wavepacket. Thus, 

-p 1‘ A,,,(r, t )  - J j ( r ’ ,  t )  d3r’ d t  =- u A,,,(r, t )  dt  
R C  e I‘ 4 F C  - hc 

= I A,,,( r ’ )  * dr‘. 
R C  

This last expression is +Dirac(r). The argument given here is semiclassical. It could be 
made rigorous by adopting a quantised field formulation in which j (  r, t )  is an operator. 
The FC phase factor then becomes a sum of time-ordered products. 

5. The ideal AB experiment 

In most theoretical treatments of the AB effect, the flux along the z-axis is assumed 
(not including the flux due to the electron!) to be absolutely constant. Let us consider 
the consequences of this assumption. Assume an ideal solenoid of n turns per unit 
length. In order to maintain the solenoid flux constant, the current must be well 
regulated. The passing electron induces a voltage into the windings in d r  given by 

d s  = -- dr-  B , ( r ) d a  
c d t  

and the total voltage induced in the solenoid is 

E = - - -  B, d3r 

where V is the volume of the solenoid. In order to maintain the current (and thus, the 
solenoid flux) fixed, the current source must produce an additional voltage given by 
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the negative of equation (30 ) .  The source must therefore produce an additional power 
given by 

B, d3r = 1 B,Bo d3r. 
4 ~ d t  v 

Thus the additional field energy is supplied (of course!) by the current source of the 
solenoid. In the ideal AB experiment, at a given instant, this power is positive or negative 
depending on whether the electron passes to the right or to the left of the solenoid. 
Thus in the ideal AB effect, the external source itself becomes a quantum system, at 
any instant having a 50% chance of producing above average power and a 50% chance 
of producing less than average power. This macroscopic system becomes reminiscent 
of Schrodinger's cat, which had a 50% chance of being alive and a 50% chance of 
being dead [ 1 3 ] .  

An interesting mechanical model of the source of the magnetic field has been given 
by Peshkin et a1 [14] whose approach complements the one given here. However, we 
caution the reader that we do not share all of their views. 

6. The physical AB effect 

The conditions of the previous section are clearly not realisable in the laboratory. In 
particular, there are many magnetic fields acting on the solenoid that induce a larger 
voltage than the field of the passing electron. Among these are the fluctuation in the 
flux due to natural current fluctuations, the fields of other passing charged particles, 
and the field due to the electron's own magnetic moment. It is therefore clear that, in 
practice, the current source may be considered a classical source. 

The fluctuations in the flux are only corrections to the flux. However, there appear 
to be so many that it is reasonable to wonder how the fringe pattern can be so stable. 
The stability of the fringes can be understood as follows. The wave properties in 
quantum theory depend upon the canonical momentum (in the symmetric Coulomb 
gauge, on the total momentum, which is the sum of r and P f i e l d ) .  Let SQ, be the 
fluctuation in the flux that occurs in a time S t  due to all causes. This fluctuation in 
the flux induces an electric field on an electron given by 

so that 

The change in Pfield is (in the symmetric Coulomb gauge) 

e e 
C 2 rrrc 

SPBficid = - SA 0 -  - - S Q .  (33) 

hence, 

SPtotal = 8v f 8 P f i e l d  = 0. (34) 
The total momentum (and hence the local wavelength) is unaffected by variations in 
flux. Were it not for equation (34), observation of the AB effect might be impossible. 
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7. Summary 

The principal results of this work are: 

(i)  In the symmetric Coulomb gauge, ( e /  c ) A (  r )  is the electromagnetic momentum 
due to the Coulomb field of the electron in the external flux of the solenoid. 

(ii) Gauge invariance causes effects of the electromagnetic momentum to appear 
as effects due to the vector potential. 

(iii) The wave length of the electron wave is related to the canonical momentum 
(in the symmetric Coulomb gauge, the total momentum) of the electron. Thus, it is 
possible for interference effects depending on a shift in electromagnetic momentum 
to occur, even when the kinetic momentum is conserved. 

(iv) Newton’s second law states that, for the AB problem, ( e / c ) u  x B = ?f. There is 
no contradiction whatever between the AB effect and Newton’s second law. This 
conclusion is further borne out by a recent result of Shapiro and Henneberger [15]. 
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